

Principles for Great Systems

Good Construction is the Key to 'Good Systems'

CONSTRUCTION PRINCIPLES FOR SUCCESSFUL INSTALLATIONS

- •Keep it Dry KIDD
- Keep it Natural KINN
- Keep it Level KILL
- Keep it Shallow KISS

KIDD -Keep it DRY

SEPARATION

 If you are wondering ask!

Redox features Soil Verification

WHY OTHER THAN SEPARATION?

SmearingWater movementAir movement

PLASTIC LIMIT

Too wet ~ Above PL Installation when "Below PL"

SOIL SMEARING

- Smearing: the damaging of soil structure by sliding pressure.
 - Any sandy loam or finer textured soil can be susceptible to smearing if enough water is present.
 - This is why we test the plastic limit before construction

FROZEN SOILS

- Any frost is too much frost for an above- grade system
- For below grade trenches frost could be present, however cannot extend to the depth of the required sidewall or bottom area of the trench/bed
- Snow should be removed with caution

FROZEN SOIL-WHY ARE THEY TOUGH?

- No way to test the plastic limit
 Wet fall
- Scarification will not work
 - Soil can be frozen solid
 - Large clumps instead of exposing natural soil structure
 - Shattering in dry frozen soils
- If scarified when frozen,
 - as the soil thaws it can "seal off" the scratched area.
- The large frozen clumps will also hamper constructability

FROZEN SOIL- OTHER PROBLEMS?

- Stock piles of sandy/loamy soil material (cover) or topsoil borrow should not be allowed to freeze
- Attempting to use this material for cover will result in:
 - •Uneven cover thicknesses
 - Increased erosion potential
 - Difficulties in establishing vegetative cover
 - Poor frost protection

PRINCIPLES: KINN

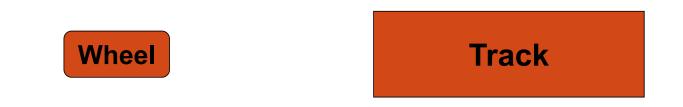
MAINTAINING NATURAL SOIL CONDITIONS

- Soil located at or near the soil <u>surface</u> is generally the best for:
 - Treatment
 - Dispersal
 - Oxygen-transfer
 - Evapotranspiration
 - Natural biological activity

13

HOW CAN WE COMPACT?

- EquipmentChoices
- System Materials
- •Others on the site

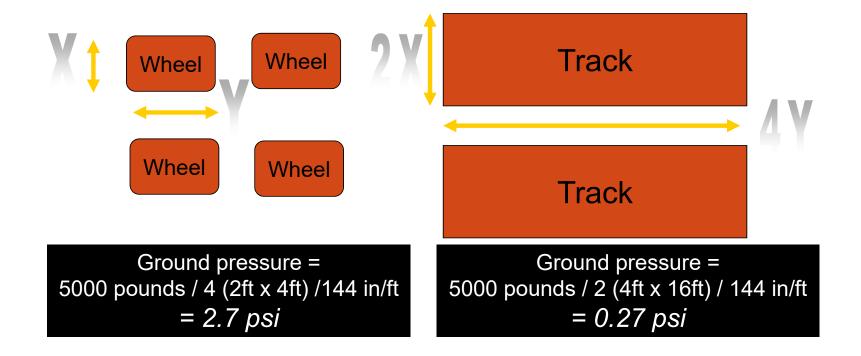

GROUND PRESSURE

 Pressure exerted on the ground by tires or tracks of a motorized vehicle

Measured in pounds per square inch (PSI) =

Loaded weight ÷ Ground contact area

 Lower weight equipment or bigger contact area results in lower ground pressure


WHEELS VERSUS TRACKS

GROUND PRESSURE

For same piece of equipment, ground pressure will be much higher with wheels

DURING CONSTRUCTION

SHOULD WE <u>NEVER</u> USE A COMPACTOR?

- Piping
- Tank settling
- Soil Treatment area- NEVER

COMPACTION APPLICATIONS & EQUIPMENT

Applications

- Pipe bedding
- Tank excavation area

Compaction equipment

- A compactor is a machine or mechanism used to reduce the size of waste material or soil through compaction
- In system construction, there are two main types of compactors:
 - Vibrating: Cohesive soil
 - Impact: Granular soil

COMPACTED SITE – WHAT TO DO?

- Avoid compaction
- Move system location
- Discuss options with Designer/Local unit of government
- Determine severity
 - Perc test
- Time will help
 - Freeze/thaw
 - Root activity
 - Weathering
- Experimental methods
 - Lower loading rates Verify changes
 Deep plowing/ripping

 - Removing & backfilling

PROTECTING EXPOSED NATURAL SOIL

- If site has been scarified, immediately cover with media to prevent
 - damage
 - contamination
- When you can't cover exposed soil immediately, protect area with tarp

Above ground systems

PRINCIPLES: KILL Keep it LEVEL

24

LASER LEVELS

WHAT IS IMPORTANT?

Bench mark- Elevations
Contours
Top of Rock
Bottom of Rock
Separation

Pipe?

PRINCIPLES: KISS

- Keep it SHALLOW
 Keep it SERVICEABLE
- Keep it SIMPLE

WHY SHALLOW?

- Treatment
 - Saturated Soil
 - Bedrock
- Oxygen transfer
- Water movement
 - Soils- Structure
 - Evapotranspiration

SHALLOW

Minimum cover
Tanks
STA
Separation

FREEZING?

- PipingSLOPE
 - •Use
 - Traffic
 - Insulation
- Late Finish
 Mulch: Protection
- Late startHolding Tank

CONSTRUCTION TECHNIQUES FOR COLD TEMPERATURES

- Freezing may only be an issue 1 in 10 years, but better to prevent it
- Key techniques
 - Keep proper slope on pipes
 - Bed pipes properly to prevent dips
 - Insulate where appropriate
 - Walkways/Parking
 - Shoveled

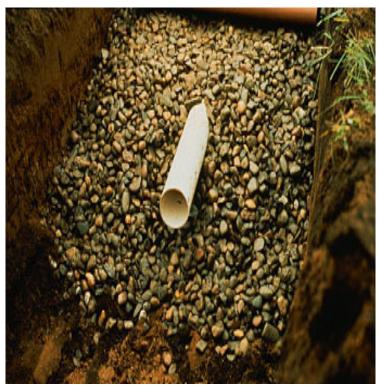
CONSTRUCTION TECHNIQUES FOR COLD CLIMATES

- Tanks and pretreatment units
 - Insulate when there is less than 2 ft of soil cover
 - Piping
 - Air source warm
- Soil treatment system
 - Limit traffic over system
 - Vegetation is a critical part of natural insulation
 - Vigorous growth in the fall is advantageous
 - Fall installations should have temporary insulation light mulch material

SERVICEABLE

- Maximum Tank depth
- Risers
- Drop boxes
- Cleanouts
- Inspection Pipes

PROPER MATERIALS


- Registration Process
- Pipe
- -Rock
- Geotextile
- Cover
- Inspection Pipes

INSPECTION OF SYSTEM

Outcome- Compliance 7080

- Local Standards
- -As-built
- Certified Statement

