

National Association of Wastewater Technicians

WHY ARE WE CONCERNED

THE NITROGEN CYCLE

THE DIFFERENT FORMS

Organic

- Organic N
- Ammonium

 \mathbf{NH}_{4}^{+}

•**Lab Test** •TKN

Inorganic

- Nitrite
- Nitrate

- Lab Test
- Nitrate

Total Nitrogen = TKN + Nitrate

UNDERSTANDING THE STEPS

Nitrification

- Moving Organic N to Ammonia
- Changing Ammonia to Nitrite
- Changing Nitrite to Nitrate

Denitrification

Moving Nitrate to Nitrogen gas

THE REMOVAL PROCESS: FULL CYCLE concept of nitrogen removal

NITRIFICATION PROCESS

Step 1: $NH_4^+ + 1.5 O_2$ Nitrosomonas $NO_2^- + 2H^+ + H_2O_2^-$ **Step 2**: $NO_2^- + 0.5 O_2^-$ Nitrobacter NO_3^-

Overall Reaction: $NH_4^+ + 2O_2 \longrightarrow NO_3 + 2H^+ + H_2O$

>4.6 lbs O₂ needed per lb ammonia

>7.14 lbs alkalinity used per pound ammonia

Uses Alkalinity to Balance or lowers pH

- > 2.86 lbs oxygen recovered per lb NO3-N
- > 3.57 lbs alkalinity recovered per lb NO3-N
- \geq 3 mg cBOD₅ / mg NO₃-N

NITROGEN TREATMENT

Vessel	Oxygen State	N Species
Septic Tank	Anaerobic	Ammonia
BOD Treatment Vessel	Aerobic	Nitrate
N Treatment Vessel	Anaerobic	Nitrogen gas

OPERATION & MAINTENANCE

Maintaining System performance BOD

Testing the SYSTEM

PROPER LAB WORK

- Organic Nitrogen
 TKN [Organic + Ammonia]
- Nitrate [Nitrite + Nitrate]
- •Total Nitrogen = Organic Nitrogen + Nitrate
- •O&M
 - ▪pH

DO.

Troubleshooting~ BOD₅

HOW MUCH & HOW DO WE MEASURE

NITROGEN REDUCTION

- Depends on DO, alkalinity and pH
- Food for processing
- Standard recirc system:
 - Typically 50% reduction
- Recirc through carbon source:
 - Up to 85% reduction

THE MATH

- Starting levels 70-100 mg/L
- 50% reduction

Measuring Nitrogen

- TKN: 60 mg/L Nitrate: 10 mg/L
- After Aerobic treatment
- TKN: 10 mg/L Nitrate: 60 mg/L
- After Anaerobic cycle
- TKN: 10 mg/L Nitrate: 10 mg/L

TN: 35- 50 mg/L

TN: 70 mg/L TN: 70mg/L TN: 20mg/L

ALTERNATIVE DENITRIFICATION SYSTEMS: POST ANOXIC

EXTERNAL CARBON SOURCE

- Methanol 6.6 lbs/gal
- Ethanol 6.8 lbs/gal
- •MicroC™: 9.56 lbs/gal
- Acetic Acid
- Sugar, etc.
- External carbon source should be:
 - Easy to use
 - Low cost
 - Available
 - Favorable Microbial Growth

CHEMICAL-FEED UNIT

- Supplemental food delivery system
- Application:
 - •# NO3 x Carbon
 - mg/l x Flow x 8.34 ÷ 1,000,000
 - •40 mg/l x 400 x 8.34 \div 1,000,000
- Ethanol 6.8 lbs/gal
- -MicroC™: 9.56 lbs/gal

.13 #

TROUBLESHOOTING NITROGEN REDUCTION

- Know the TN required by your permit
 No requirement, 50% reduction, 10mg/L, etc.
- Know local/regional norms for ammonia, organic nitrogen, Groundwater nitrates
- Know the alkalinity of your waste source
- Understand the nitrogen reduction process and related factors

OPTIMUM NITROGEN REDUCTION REQUIRES

- Adequate alkalinity
 - Iab test shows levels
- pH of 6-8
- Filtrate DO level of 2.5-8 ppm
- Influent ammonia level of ~60 mg/L
- Influent TN below 65 mg/L
- Adequate time for nitrifying bacteria to develop
- Adequate temperature (below 40°F slows the nitrification/denitrification process)

SIGNS OF GOOD NITROGEN REDUCTION

- Clear, odorless effluent
- Normal-looking biomat
- Additional testing will show
 - Low BOD₅
 - Relatively <u>low</u> ammonia levels (NH₃-n)
 - Relatively <u>high</u> nitrate levels (NO₃-n)

CHALLENGES OF NITROGEN REMOVAL FOR ONSITE APPLICATIONS

- Periodic and Non-uniform Influent Flow
- Adverse Impact of High and Low Loading Rates on Nitrogen Removal
- Typically Non-Optimum Influent BOD:TKN for Denitrification Process
- Potential for unexpected toxicity in the Influent
- Temperature limitations in our environment

INHIBITING FACTORS

- High carbonaceous demand
- Toxic compounds in wastewater
- Disinfectants
- Insufficient alkalinity or buffering capacity

TROUBLESHOOTING POOR NITROGEN REDUCTION FILTRATE ALKALINITY TOO LOW

- Available alkalinity determines degree of nitrification
- For each part ammonia that is nitrified, 7.14 parts alkalinity is consumed
- 70 mg/L x 7.14 ratio = 500 mg/L alkalinity
- If all the available alkalinity is consumed, the pH may drop too low (typically maintain about 80 ppm Alkalinity in the effluent)
- A high recirc-ratio increases alkalinity consumption

TROUBLESHOOTING POOR NITROGEN REDUCTION FILTRATE PH TOO LOW

- Check pH level (<6 retards microbial activity)</p>
- Check influent alkalinity level
- Check recirc-ratios; reduce if too high
- Ask system user about chemical discharges:
 - Carpet cleaners
 - Chlorides (water softener regenerate)
 - Chlorine (other disinfectants of sanitizers)
 - Photo developing agents, etc.

TROUBLESHOOTING POOR NITROGEN REDUCTION FILTRATE DO LEVELS OUTSIDE 2.5 - 6 RANGE RETARD NITRIFICATION

- •Low filtrate DO [< 2.5 mg/L]:
 - Increases potential for odor (typically sulfides)
 - Check air flow in ventilation fan assembly [Low air in RMF]
 - Check recirc-ratio; increase as necessary
- •High filtrate DO [>6 mg/L]:
 - Indicates excessive recirculation
 - Indicates too little HRT in tank
 - Decrease the recirc-ratio

TROUBLESHOOTING POOR NITROGEN REDUCTION HIGH FILTRATE AMMONIA (NH3-N) LEVELS

- Check for sufficient aeration
 - Ensure no blockage of air flow into Filter
 - Ensure no blockage in manifold causing ...
 - Hydraulic overloading, saturation
 - Short circuiting
- Check for sufficient alkalinity
 - If insufficient, consider supplemental buffering

TROUBLESHOOTING POOR NITROGEN REDUCTION LOW FILTRATE NITRATE (NO3-N) LEVELS

- Check recirc-ratio; reduce if necessary
 high recirc-ratios prevent adequate denitrification
- •Verify incoming Organic N [ammonia] levels
- Check recirc/blend for sufficient organic food source
 - if BOD is too low, nitrogen reduction won't occur

RECIRCULATION RATIO

 Is the ratio between the recirculated volume through the media and the 'forward flow'

Recirc. Ratio = [Recirculated volume}- 1 Forward flow

RECIRC. RATIO ${R_{R}+1}_{x}Q \sim Amount Pumped to filter$ **Circulation Ratio** Flow **Q** ~ Measured Flow

Q ~ Measured Flow [from house:going to STA] **Recirculation Ratio**

RECIRC RATIO {**R**_R+1}_x**Q** (9,307 gpd) Filter Pump tank Q (2,930 gpd) RRQ

CHANGING THE RECIRCULATION RATIO

- The BOD is too high?
- Solution Raise the RR
- **Cloudy effluent Low performance**
- If the Service provider needs to change the recirculation ratio to 4.0:1
- Increase Ratio: Recommendation

Changing the Recirculation Ratio

Calculated:

- Recirc. Ratio = 2.2:1
- Pump 'off' time = 131 minutes
- Off time x Current RR ÷ New RR

Example:

131 min x 2.2 \div 4.0 = 72.05 min

(New pump 'Off' time)

David Gustafson, PE gusta002@umn.edu